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Discrete Rational Lp Approximation 

By Jerry M. Wolfe 

Abstract. In this paper, the problem of approximating a function defined on a 

finite subset of the real line by a family of generalized rational functions whose 

numerator and denominator spaces satisfy the Haar conditions on some closed inter- 

val la, b] containing the finite set is considered. The pointwise closure of the 

family restricted to the finite set is explicitly determined. The representation 

obtained is used to analyze the convergence of best approximations on discrete sub- 

sets of [a, b] to best approximations over the whole interval (as the discrete subsets 

become dense) in the case that the function approximated is continuous on [a, bi 

and the rational family consists of quotients of algebraic polynomials. It is found 

that the convergence is uniform over [a, b] if the function approximated is a so-called 

normal point. Only Lp norms with 1 < p < -o are employed. 

Introduction. In the application of nonlinear approximation theory one is 

normally constrained to the calculation of best approximations on finite subsets of 

the underlying domain. Moreover, the discrete problem may be more difficult than 

the continuous problem, in the sense that the discretized family may not be (point- 

wise) closed so that best approximations need not exist. In this paper, these problems 

will be investigated for a family of generalized rational functions defined on a closed 

subinterval of the real line. 
In particular, let P and Q be Haar subspaces of C[a, b] of dimension n and m, 

respectively, let X = {xj, * - *, Xm} C [a, b] with M > m + n + 1 and let R(X)- 

fplq lp GP, q E Q and q(x) * 0 for all x E X}. Then, if 1H-I1 is a norm on B(X) 
{f If is a real-valued function on X} and f E B(X) is given, we seek an r* E R(X) 
such that Ilf - r* 11 = infrER (X) If - r 11. The case when Ilf 11 = maxXexEIf(x)I has been 

extensively studied (see [1] and [2] for example) and we shall consider only norms 

of the form lf Ilt = [Xexlf(x)t] '/t, where 1 < t < oo. 
The techniques that will be used are somewhat different from those useful for 

uniform approximation since there is no characterization theorem available for these 

norms. 
Remark 1. The family R(X) is usually defined by requiring that, if p/q C R(X), 

then q(x) > 0 for all x E X. However, there seems little to be gained by this require- 

ment since it does not preclude the existence of a pole in [a, b], even at a best ap- 

proximation, and there is usually no simple way to maintain this condition during 

computation. Moreover, as will be seen, for sufficiently dense discrete subsets using 
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ordinary rational approximation and least-square approximation, say, the condition 

q(x) > 0 for all x C X will hold for a best approximation anyway. 

Existence of Discrete Best Approximations. We begin by identifying explicitly 

the pointwise closure R(X) of the set R(X) in B(X). It is clear that R(X) is an ex- 

istence set in the sense that each f C B(X) has a closest point in R(X) with respect to 

any norm on B(X). The notation R(Y), where Y is some subset of [a, b], will denote 

the set {p/q I P C P, q C Q and q(x) = 0 for all x C Y}. 

The following example illustrates the "exceptional" types of elements that may 

appear in R(X). 

Example 1. Let X= {-3,-2,-1, 0, 1, 2, 3} and 

a + ax +a x2 
R(X) =R2b(X= +bx+ b 2 bo + bix + b2x2 $ 0 for all x C X 

(a) Let pv(x) = x2 + 1/v and qv(x) = X2 - 1/v, v = 2, 3, - . Then 

pV(x)/qv(x) - 1 at all x except x = 0 where pJ(0)/qJ(0) = - 1. The limiting function 
is clearly not an element of R(X) itself. 

(b) Let pv(x) = 1/v and qV(x) = x2- (1 - 1/v)2. Then pv(x)/qv(x) 0 ex- 

cept at x = ?1 where the limiting value is ?2. Again, the limiting function is not in 

R(X). 
As will be seen, the types of behavior in (a) and (b) above are the only ones to 

be dealt with in describing R(X). To clarify the presentation of Theorem 1, we have 

the following definition. 

Definition. Let S1 denote the set of functions g in B(X) such that there exists 

some set S C X (depending on g) containing at most k = min(n - 1, m - 1) elements 

and some rational function p/q in R(X - S) with p(x) = q(x) = 0 for all x C S for 

which g = p/q on X - S. 

Let S2 denote the set of all functions g in B(X) such that g is zero except precisely 

on some subset T C X (depending on g) having at most m - 1 elements. 

Remark 2. We should note here that the sets Si and S2 are not disjoint since 

{0} C Si n S2 and that Si D R(X). In general, neither is a subset of the other. Also, 

some elements of Si may not have a unique pair S and p/q C R(X - S) corresponding 

to them. For example, in R2(X), with X as in Example 1, the function g(x) = 1 is 

"represented" by the empty set and 1/1, but also by S = {0} and x/x e R(X - O), 
etc. This ambiguity will not affect what follows. In Example 1 above, the limiting 

function in (a) is in S. That is, the function equals p/q- X2/X2 E R(X -{0}), excep 

on S = {0} where its value is - 1. Note also that p = q = 0 on S. Similarly, in (b) 

the limiting function is in S2, since it vanishes except at precisely 2 (= m - 1) points 

where its value is ?2. 
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TIEOREM 1. The set R(X) is given by S1 U S2. 
Proof. Suppose first that {rv} = {p,/q0} is a sequence in R(X) converging point- 

wise on X to some g C B(X). Let N((p) = maxXIXjp(x)j for all <p C B(X). Clearly, we 
may assume N(q0) = 1 for all v. Now, {N(rv)} is bounded and so, for some 0 < K < 
00, we have K > N(pv/q ) > N(p,). Now, N(-) is a norm on both P and Q, since both 
are Haar subspaces and M > m + n + 1, and so there exist subsequences (which we 
do not relabel) {ph} and {qv} and elements p C P and q C Q such that pv - p and 

qv q uniformly on [a, b] where N(q) = 1. Thus pv(x)/qv(x) p(x)/q(x) for all 
x E X except, perhaps, on S-{x C Xlq(x) = O}. Denoting the cardinality of a set A 
by C(A), we have that C(S) < m - 1 since q is not identically zero and Q is Haar of 
dimension m. Also, since {N(rv)} is bounded, we have that p(x) 0 O for all x C S. 
We consider two cases: 

(a) p E 0. Then C(S) < min(m - 1, n - 1) and g(x) = p(x)/q(x) for each x C 
X S and p/q ER(X -S). Thusg ES1. 

(b) p 0. Again C(S) < m - 1 and, clearly, g(x) 0 O on X - S. Letting T 
be the subset of S where g is not zero, we conclude g C S2. 

Thus, g CE S U S2 and so R(X) C S1 U S To show the opposite inclusion, 
suppose g C Si U S2 and consider two cases. 

(a) g E S1i. Then g(x) = p(x)/q(x) E R(X - S) for x C X - S where C(S) S 

min(n - 1, m - 1)-k and p(x) = q(x) = 0 on S. PickP1 C P and q 1 E Q such that 

q1 (x) > 0 for all x C X and p1 (x) = g(x)q 1 (x) for all x C S. Both of these choices 
are possible by the elementary properties of Haar spaces and since C(S) S k. Define 

r. = (p + ep1)/(q + eq1). On X S, r,(x) -p(x)/q(x) = g(x) as e-O and on S, 

r,(x) = p1(x)1q1(x) = g(x) so that r, g on X and hence g E R(X). 
(b) g C S., Then g(x) is nonzero exactly on T C X where C(T) < m - 1. Pick 

p1 E P such that p1 (x) > 0 for all x C X and q1 C Q such that q 1 (x) = p1 (x)/g(x) 
for all x C T. Finally, let q E Q be such that q(x) = 0 for all x C T and q(x) # 0 
for every x E X - T (e.g.,let q have (m - 1) - C(T) roots between two consecutive 
points of X, be nonzero at some point of X T and be zero on T. Since this requires 
interpolation at m points, this is always possible.) Then, for e sufficiently small and 

positive, let rE = ep1/(q + eq1). Then, r,(x) - 0 as e > 0 for all x C X - T and 

r,(x) = g(x) for x C T and so g E R(X). Thus, S1 U S2 C R(X) and the proof is 
complete. El 

COROLLARY 1. Let 

0M 

n~~~~~~~~ 
R(X) -S(X)-c b + writ+ebn a 

Then Rm(X) = S1 U S2 where S1 can be written as 
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S1 = lg eB(X) Ig(x)= p*() on X S, where E R' - l(X - S) 

for some S C X with C(S) = 1< k = min(m, n) 

and S2 is as before. 
Proof. This follows immediately from Theorem 1 by cancelling the common roots 

of p and q on S in the statement of.Theorem 1. 0 
To further illustrate Corollary 1, we refer back to (a) of Example 1. There the 

limiting function g(x) E Si was equal to x2/x2 except on S = {O} where its value was 
- 1. After cancelling the 1 = 2 common roots of p(x) = x2 = q(x) on S = {O} , we 

have p*(x) = 1 = q*(x) and p*/q* E R?(X - {O}). In general, it is possible that q* 
still has roots inS, so that the statement p*/q* E Rnj-1(X S) cannot be strengthened. 

A natural question to ask is: When does a function in B(X) have a best approxi- 
mation in R(X) that is not in R(X)? Necessary conditions for this occurrence are con- 
tained in the following result. 

COROLLARY 2. Let 1 < t < oo be arbitrary. Then, if f E B(X) has g E Si 
(or g E S2) as a best approximation, g = f on the associated set S(T). In the case 
R(X) Rn(X), if g E S1 is a best approximation to f, then the function p/q E 

m -_(X - S) where g = p/q on X - S is a best approximation to f (restricted to 

X S) from R n-I(X S) where 1 = C(S). 

Proof. If g is a best approximation to f from R(X) and disagrees with f at some 
point of S (or T if g E S2), then redefinition of g(x) at this point to be equal to f(x) 
gives an element of R(X) that is clearly a better approximation to f, thus yielding a 
contradiction. To obtain the second conclusion, assume it is false and find p1/ql E 
Rn-Ij(X - S) that is a better approximation than p/q. But then, defining h(x) to be 

p1 /q1 on X - S and f(x) on S and applying Corollary 1, we obtain a better approxi- 
mation to f than g-a contradiction. O 

The following example shows that a function not in R(X) may have a best ap- 
proximation that is not in R(X), so that the situation described in Corollary 2 can 
occur. 

Example 2. Let X = {- 2, - 1, 0, 1, 2} and consider approximation by ele- 

ments of R(X) = Rt(X) with respect to the norm llpII = 2; XI p(x)I for all ep E B(X). 
Define the function f by f(? 1) = 9, f(?2) = - 1 and f(O) = 3. Then the function 
g E R(X) which is 3 at x = 0 and vanishes elsewhere satisfies ll - f l1 = 1. Clearly, 
no constant function does better than g over X and if r(x) = (a + bx)/(c + dx) with 
ad - bc # 0, and c + dx # 0 for x E X, then a simple check using the strict mono- 
tonicity of r shows that lif - rll > 1. By Corollary 1, the only remaining elements 
of R(X) are constant on X except for exactly one point. It is clear from the graph 
of f that, using constant functions where one can ignore one point of X, it is impos- 
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sible to do better than g. Finally, defining g to have any constant value between 0 
and - 1 on X - {O} and the value 3 at x = 0 yields the same error. Thus, f has, in 
fact, infinitely many best approximations from R(X) none of which are in R(X). 

Another simple application of Theorem 1 is the following. 
COROLLARY 3. Let f be a strictly positive continuous function on [a, b] such 

that its maximum value is less than twice its minimum value. Then f has a best ap- 
proximation in R?(X) for any finite subset X of [a, b] containing at least three points. 

Proof. Let f be any function satisfying the hypotheses of the theorem. The only 
elements of R?(X) that are not in R?(X) are those that are identically zero except at 
exactly one point. Clearly, if such a function g were a best approximation, g would 
agree with f at some point where f had its maximum, say at x1i. Let x2 be any point 
where f achieves its minimum over [a, b] and consider the constant function r(x) = 

f(x1) for all x E X. Then, for any x $ x1, 

Ir(x) - f(x)I = If(x l) - f(x)l < If(X1) - f(X2)1 = f(X1) - f(x2) < f(X2) 

= lf(X2) - g(X)I < If(x) - g(x)1, 

so that g cannot be a best approximation. Whence the best approximation must lie 
in R?(X). Ol 

Convergence of Discrete Approximations. We consider here the following speci- 
fic problem. Given f in C[O, 1], it is desired to calculate a best approximation to f 
from Rn [?, 1] = pl/q Ip E P, q E Pm and q(x) > O for all x E [0, 1] } (where Pk 
denotes the polynomials of degree k or less) with respect to some Lt norm with 1 < 
t < o. To accomplish this, [0, 1] is replaced by a sequence of grids of the form 

[hv] = {k/Nvlk = 0, 1, , Nv where Nv > o?, and the Lt norm is replaced by its 

discrete analog 

IIl[h VI=hV 
( 

EE[ I 
Xlt 

where the endpoints have been included for notational convenience. Then a best 
approximation gv E R( [hV] ) is calculated for each v. The natural and important 
question is: Does the sequence {gv} converge (in some sense) to a best approximation 
r in Rn[0, ] ? 

Remark 3. The choice of equally spaced grids is for convenience only. In gen- 
eral, one uses the discrete norm 

N- 1 1 1 t 

the results obtained below are still valid once it is noted that the results of the 
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preceding section could have been obtained using weighted discrete norms of the form 

llg 11 = [l g(xj) I i] where w > O, j = O, ,N. 
po 

The following concept of normality is basic to the whole problem of convergence. 

Definition. An element r E Rn [0, 1] is called normal if r E Rn [0, 1] - 

Rn -11 [0, 1]. Also, for 1 < t < o' arbitrary but fixed, define NP as {ff C[0, 1] I f 

has only normal best approximations in Rn [0, 1] }. 

Remark 4. By a theorem of Cheney and Goldstein [3], for 1 < t < W', NP= 

C[O, 1] Rn - 11 [O, 1 ] if m > 1. If t = 1 (or oo), an element f not in Rn [O, 1 ] may 

have a nonnormal best approximation [4]. 

In what follows, the symbol ligilA, where A is a subset of [hV] and g E B([hV] ), 

will denote h It(ExEA Ig(x)lt)lIt. To simplify notation, we will shorten 11-11[h ] to 

IIlIv. The Lt norm on [0, 1] will be denoted by 11-Ilt. 
LEMMA 1. Let t be arbitrary with 1 < t < oo. For each v, let [hv] denote the 

set {k/Nv Ik = 0, , Nv} where {Nv} is a sequence of positive integers such that 

Nv ? Let f E NP and select for each v a best approximation to f from Rn([hv]) 
with respect to the corresponding discrete Lt norm. Then, there exists a vo such that 

for all v > vo, gv is not in the set S2 of Theorem 1. 

Proof. Assume the lemma is false. Then, there is a sequence of subsets of 

[hv], say {Tv}, such that each Tv contains at most m elements and such that gv = f 

on Tv and vanishes elsewhere. Let Av [hv] - Tv and let ro denote a best approxi- 

mation to f over [0, 1] from Rn [0, 1]. Then Ilf - gv IIV < Ilf - rO lIv Ilf - rO It 
as v - o and Ilf - gv llv = IlfIlA v lIf Ilt as v > oo, since each Tv has at most m 

points and f is continuous. Thus, 

If it= lim Ilf -gv IIv < lim llf - roIiv = Ilf - rolit' 

which is a contradiction since f E NP and 0 is not a normal element of Rn [0, 1]. O 

LEMMA 2. Let t be arbitrary in [1, oo), f continuous on [0, 1] and m > 1. 
Assume that, for each v, gv E S1 is a best approximation to f with respect to the norm 

11II V and let rv pv/qv E Rm -IV([h] 
- Sv) be such that gv = pv/qv on [hv] - S 

where Sv is some subset of [hv] containing lv < min(m, n) elements. Then, there is a 

set F C [0, 1] whose complement has Lebesgue measure zero and an element r of 

Rn -1 [0, 1] where 1 = lim lv such that, for some subsequence {rv}, we have rv.(x) m - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
r(x) for all x E F. In fact, F = _Fj where each F, is a finite union of closed 

subintervals with F, C Fj+ 1 such that rvk r uniformly on each F,. 
Proof. Let AV = [hv] - Sv. The sequence {llrv IIA V} is bounded since 

Ilf - rv IIAv < Ilf - gv llv < lIf llv Ilf Ilt as v - o Moreover, we may assume 

lIqv L. = 1 for all v. 

Claim. {llpvII,,} is bounded. 
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Proof. Assume this to be false and let r, = r / llpv II.. By passing to a sub- 

sequence if necessary, we may assume that lIr' IIA > 0. Let p, denote PVlI "P11 I.. 
Then we may assume that p- p* and qv q* uniformly where lIp* 11. = lIq*11 = 

1 and where p* and q* are polynomials of degree at most n and m, respectively. Then, 

rIv p*p/q* uniformly on each closed subset of the set {xlq*(x) # O}. Pick a closed 

subinterval I [a, 3] C [0, 1] such that neither p* nor q* has a root in I and let Bv 
denote the set ([hv] - Sv) n I. Then, infx&ilp*(x)I - > 0 so that 

I t qv 00 | BV BV I ilt xlB t 

for v sufficiently large,lwhere 01 is the number of elements in BB. But 1N/Nv x3- 

ce as v oo. Hence, for v sufficiently large, llr' IIAV > llrvIIB1 (IB - a)lIt8/4 > 0, 

which is a contradiction and so the claim is proved. 
Thus, {Illpv1 I} is bounded and so there exist subsequences (which we do not 

relabel) {pv} and {qv} and polynomials p and q such that Pv p and qv > q 

uniformly where lIq II1, = 1. As above, rv= pvl/qv converges to r p/q uniformly on 

closed subsets of {x E [0, 1] Iq(x) = O}. Now, this set can be written as U- Fj5 
where each F? is a finite union of closed intervals with F? C F?+ 1 for all i and where 

rv r uniformly on each F.. Letting A v1 =AV n F., we have llrIIA vi llrv - r IIA i 
+ llr IIA vj so that 

limlIrli ?limllr 11 + O<M<oo, 
V Avj V v Avj 

where M is some constant independent of j. But 

lim llr "A11 [fFiIr(x)tdxl 

for each j since r is continuous on F, and so fF Ir(x)Itdx < Mt for all j. Since F = 

Ul._lF has measure one and since F, C F?+ 1, we conclude from the monotone con- 

vergence theorem that r E Lt [O, 1]. But this means that r has at worst removable 

singularities in [0, 1]. Thus, r E Rn-k [O, 1] for some k > 1 = lim Iv and the proof 

is complete. O 
We are now ready for the following theorem which is the main result of this 

paper. 
THEOREM 2. Let t be arbitrary in [1, oo) and let f be a continuous function on 

[0, 1] that has only normal best approximations in Rn [0, 1]. Then there exists a 

v0 such that, for all v > vo, f has a best approximation in Rn (Q[hj]). Moreover, if 
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{r,} is any sequence of best approximations to f from Rn ([hj), then every subse- 
quence of {r,} has a further subsequence uniformly convergent to some best approxi- 
mation to f from Rn [0, 1]. 

Proof. By Lemma 1, we may assume that any best approximation to f from 

Rn([h,1) is not in S2. Suppose that there exists a sequence of best approximations 

vg} C S1 where gv = pI/qv E Rn1V Q([hv] - Sv) on [hv] 
- 

Sv where S, has Iv ele- 
ments with min(m, n) > lv > 1 > 0. We wish to show that the assumption lv > 10 
> 0 leads to a contradiction. 

Let r be any best approximation to f from Rn [0, 1]. Then Ilf - gv liv < 
Ilf - rIl > Ilf - rIlt as v > o' so that limv Ilf - gv lv < Ilf - rIlt. By Corollary 2, 

dist(f, Rm n-I v (h I = llf-g 11 

Thus, 
n-I 

lim dist(f, Rm v ( [hv Sv )) < dist(f, Rmn [? 1 ]) 

By Lemma 2, there is an r' E R n7lo [0, 1] and a subsequence (which we do not 
relabel) {rv} such that rv > r' uniformly on each closed subset of a set F U= jFj 
whose complement has measure zero. Let e > 0 be given and pick k so that 
Ilf - r'IIAv < Ilf - r' IIA uk + e where Av = [hv] - Sv and Avk = Av n Fk. Then 
If- r'IIA V < lf- rV IIA vk + e + llr' - rv IIA uk and thus 

Ilf - r'I i lim rlf - r IIA < e + limIlf - rV A + 0 

? e + dist(f, Rn[0, 1]). 

Since e > 0 was arbitrary, we conclude that Ilf - r'll < dist(f Rn [0, 1]) which is 
a contradiction, since f E NP but r' E R7n-l[O, 1] is not normal. 

Thus, no subsequence of {Iv} is bounded away from zero and, since each lv 
is an integer, eventually lv = 0. Hence, Sv is eventually empty and hence, for all v 
greater than some vo, each best approximation is in R'([hV]). 

The remainder of the theorem follows from Lemma 2 (and its proof) and the 
above argument which shows that any cluster point (in the sense of Lemma 2) of a 
sequence of best approximations {rv} is a best approximation to f from Rm [0, 1] 
and hence is normal and can have no singularities in [0, 1]. Thus, the corresponding 
subsequence of {rv} will eventually have no singularities in [0, 1] and the convergence 
will thus be uniform on the entire interval. El 

The following is immediate from Theorem 2. 
COROLLARY 4. Iff E NP has a unique best approximation r in Rm [0, 1], 

then any sequence {rv } of best approximations from R' ( [hv] ), v = 1, 2, *, con- 
verges uniformly over [0, 1] to rO. 
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